[home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] | ||
Mathematics-Online course: Preparatory Course Mathematics - Analysis - Differential Calculus | ||
Babylonian Square Root Iteration |
[previous page] [next page] | [table of contents][page overview] |
1 |
1.5 |
1.416666666666666666666666666666666666667 |
1.414215686274509803921568627450980392157 |
1.414213562374689910626295578890134910117 |
1.414213562373095048801689623502530243615 |
1.414213562373095048801688724209698078570 |
Apparently, the convergence is quite fast. With each step the number of correct digits (underlined) nearly doubles.
In this example, quadratic convergence can be proved directly by a simple algebraic manipulation:
The geometric interpretation of Newton's method shows that the iteration is convergent for any
[previous page] [next page] | [table of contents][page overview] |
automatically generated 1/9/2017 |