Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Preparatory Course Mathematics - Analysis - Differential Calculus

Newton's Method


[previous page] [next page] [table of contents][page overview]

With Newton's method we can determine a zero $ x_\ast$ of a function $ f$ numerically. The sequence $ x_0,\,x_1\,\ldots$ of the approximations to $ x_\ast$ is obtained via linearization, i.e., $ x_{l+1}$ is the intersection of the tangent to $ f$ at $ \left( x_\ell,f(x_\ell) \right)$ with the $ x$-axis:

$\displaystyle x_{\ell+1} = x_\ell - f(x_\ell)/f^\prime(x_\ell)$

\includegraphics[width=0.6\linewidth]{Newton_Verfahren.eps}

For a simple zero $ x_\ast$ $ (f^\prime(x_\ast)\ne0)$, Newton's iteration converges quadratically, i.e.,

$\displaystyle \left\vert x_{l+1}-x_{\ast} \right\vert \leq c\; \left\vert x_{l}-x_{\ast} \right\vert^2
$

if the initial approximation $ x_0$ is sufficiently close to $ x_\ast$.


[previous page] [next page] [table of contents][page overview]

  automatically generated 1/9/2017