Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Analytic Geometry - Orthogonal Groups

Rotation


[previous page] [next page] [table of contents][page overview]

A rotation in $ \mathbb{R}^n$ by angle $ \vartheta$ in the $ (j,k)$-plane can be described by the matrix

$\displaystyle \begin{array}{lr}
\\
\\
\mathrm{row}\ j & \to \\
\\
\mat...
...& \\
&& s && c && \\
&&&&& \ddots & \\
0 &&&&&& 1
\end{array}\right)=R
$

where $ c=\cos(\vartheta)$, $ s=\sin(\vartheta)$.
(Authors: App/Burkhardt/Höllig)


  automatically generated 4/21/2005