Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Normal Forms - Jordan Normal Form

Jordan Form


[previous page] [next page] [table of contents][page overview]

A square matrix $ A$ can be brought to block diagonal form by a similarity transformation

$\displaystyle J =
\left(\begin{array}{ccc}
J_1 & & 0 \\ & \ddots & \\ 0 & & J_k
\end{array}\right)
=
Q^{-1} A Q\,.
$

Here the Jordan blocks have the form

$\displaystyle J_i =
\left(\begin{array}{ccccc}
\lambda_i & 1 & & & 0 \\
0 & \...
...ts & \\
& & & \lambda_i & 1 \\
0 & & & & \lambda_i
\end{array}\right)
\,,
$

where $ \lambda_i$ is an eigenvalue of $ A$.
Since the generalised eigenspaces $ H_\lambda$ are invariant under mapping $ A$, we can reach the block form with respect to a basis of generalised eigenvectors. Using the special cyclic bases

$\displaystyle B^{k_i}v_i,\,\ldots,\,Bv_i,\,v_i,\quad
B = A - \lambda_i E
\,,
$

we obtain blocks of the desired form.

(Authors: Burkhardt/Höllig/Hörner)

(temporary unavailable)



  automatically generated 4/21/2005