Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Preparatory Course Mathematics - Analysis - Extrema and Curve Sketching

Test for Extrema


[previous page] [next page] [table of contents][page overview]

A $ n$ -times continuously differentiable function $ f$ with

$\displaystyle f'(a) =f''(a)=\cdots=f^{(n-1)}(a)=0$   and$\displaystyle \quad
f^{(n)}(a) \neq 0\,,
$

has an extremum at $ a$ iff $ n$ is even. In this case $ f$ has a local maximum (minimum) at $ a$ , if $ f^{(n)}(a)<0$ ( $ f^{(n)}(a)>0$ ).
(Authors: App/Höllig/Abele)

(temporary unavailable)

[previous page] [next page] [table of contents][page overview]

  automatically generated 1/9/2017