Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Preparatory Course Mathematics - Basics - Mappings

Composition of Mappings


[previous page] [next page] [table of contents][page overview]

The composition of two maps $ f:A\to B$ and $ g:B\to C$ is defined by

$\displaystyle a \mapsto (g\circ f)(a) = g(f(a)),\quad a\in A\,
,
$

which is illustrated in the following diagram:
\includegraphics[width=10cm]{komposition_Bild}





The composition $ \circ$ is associative, i.e.,

$\displaystyle (h\circ g)\circ f = h\circ (g\circ f)\,
$

yet it is obviously not commutative.
(Authors: Höllig/Knesch/Abele)

[previous page] [next page] [table of contents][page overview]

  automatically generated 1/9/2017