Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Preparatory Course Mathematics - Linear Algebra and Geometry - Lines and Planes

Distance Point-Plane


[previous page] [next page] [table of contents][page overview]

Given a plane with normal vector $ \vec{n}$ through point $ P$ . Let $ X$ be the perpendicular projection of a given point $ Q$ onto this plane. The so called perpendicular vector of point $ Q$ onto the plane is given by

$\displaystyle \overrightarrow{XQ} =
\frac{\overrightarrow{PQ}\cdot\vec{n}}
{\vert\vec{n}\vert^2}\,\vec{n}\,.
$

Its length

$\displaystyle d = \frac{\vert\overrightarrow{PQ}\cdot\vec{n}\vert}
{\vert\vec{n}\vert}
$

is the distance of the plane from $ Q$ .
\includegraphics[width=10cm]{abstand}


(temporary unavailable)

[previous page] [next page] [table of contents][page overview]

  automatically generated 1/9/2017