Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Vector Calculus - Parallelepidial Product

Volume of a Tetrahedron


[previous page] [next page] [table of contents][page overview]

The volume $ V$ of a tetrahedron spanned by the vectors $ \vec{a}$ , $ \vec{b}$ und $ \vec{c}$ can be calculated by

$\displaystyle V=\frac{1}{6}\vert[\vec{a},\vec{b},\vec{c}]\vert\,.
$

\includegraphics[width=0.5\linewidth]{tetraeder_volumen.eps}

(temporary unavailable)

(temporary unavailable)

[previous page] [next page] [table of contents][page overview]

  automatically generated 10/30/2007