Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Linear Systems of Equations - Direct Methods

Cramer's Rule


[previous page] [next page] [table of contents][page overview]

For a square LSE $ Ax=b$ the following holds true:

$\displaystyle x_i \operatorname{det} A =
\operatorname{det}
(a_1,\ldots,a_{i-1},b,a_{i+1},\ldots,a_n)\,
,
$

where $ a_j$ denotes the $ j$-th column of the coefficient matrix.

In particular, if $ \operatorname{det}A\ne0$, then we can find the inverse $ B=A^{-1}$ by

$\displaystyle b_{i,j} = \frac{
\operatorname{det}
(a_1,\ldots,a_{i-1},e_j,a_{i+1},\ldots,a_n)}{
\operatorname{det}A}\, .
$

(Authors: Burkhardt/Höllig/Streit)

(temporary unavailable)

(temporary unavailable)

(temporary unavailable)

  automatically generated 4/21/2005