Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Matrices - Special Matrices

Fourier Matrices


[previous page] [next page] [table of contents][page overview]

Raising the root of unity

$\displaystyle w_n = \exp(2\pi\mathrm{i}/n)
$

to higher powers we obtain the so called Fourier matrix

$\displaystyle W_n =
\left(\begin{array}{ccc}
w_n^{0\cdot 0} & \cdots & w_n^{0 ...
...
w_n^{(n-1) \cdot 0} & \cdots & w_n^{(n-1)\cdot (n-1)}
\end{array}\right)\,
.
$

Normalizing ( $ W_n \to W_n/\sqrt{n}$) yields a unitary matrix.
(Authors: App/Burkhardt/Höllig)

(temporary unavailable)


  automatically generated 4/21/2005