Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Matrices - Matrix Operations

Inverse Matrix


[previous page] [next page] [table of contents][page overview]

For an invertible linear map $ v\mapsto Av$ the inverse of matrix $ A$ is denoted by $ A^{-1}$, that is,

$\displaystyle A A^{-1} = A^{-1} A = E
$

where

$\displaystyle E = \left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \c...
... \\
\vdots & 0 & \ddots & \vdots \\
0 & & \cdots & 1
\end{array}\right)
$

is the identity matrix.
(Authors: Burkhardt/Höllig/Hörner)

The invertible (or regular) matrices $ A\in K^{n\times n}$ form a group with respect to the matrix multiplication. This group is called general linear group and is denoted by $ \operatorname{GL}(n,K)$.

We have

$\displaystyle (AB)^{-1} = B^{-1} A^{-1}
$

for $ A,B\in \operatorname{GL}(n,K)$.

(temporary unavailable)

(temporary unavailable)

  automatically generated 4/21/2005