Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Basic Structures - Bases

Gram-Schmidt Method


[previous page] [next page] [table of contents][page overview]

Starting from a given basis $ b_1,\ldots,b_n$ we can construct an orthonormal basis $ u_1,\ldots,u_n$ as follows: We successively define
$\displaystyle \tilde u_j$ $\displaystyle =$ $\displaystyle b_j -
\sum_{k<j} \langle b_j,u_k \rangle u_k,$  
$\displaystyle u_j$ $\displaystyle =$ $\displaystyle \tilde u_j / \Vert\tilde u_j\Vert$  

for $ k=1,\ldots,n$.

(Authors: App/Burkhardt/Höllig)


(temporary unavailable)

  automatically generated 4/21/2005