Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Basic Structures - Vector Spaces

Linear Hull


[previous page] [next page] [table of contents][page overview]

Let $ V$ be a vector space.

The set of all linear combinations of vectors $ v_1, \ldots , v_m \in V$ is called the linear hull of the vectors $ v_i$; notation: $ \operatorname{span}(v_1,\ldots,v_n)$.

If $ M \subset V$, then the set of all linear combinations from $ M$ is called linear hull of $ M$.

Linear hulls are subspaces.

(Authors: App/Burkhardt/Kimmerle)

(temporary unavailable)

  automatically generated 4/21/2005