Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Analytic Geometry - Quadrics

Quadric


[previous page] [next page] [table of contents][page overview]

Let $ a$ be a quadratic form, $ \beta$ a linear mapping and $ c\in\mathbb{R}$. The set

$\displaystyle Q=\{x\in\mathbb{R}^n : a(x)+2\beta(x)+c=0\}
$

is called quadric.

In terms of matrices $ Q$ can be written as

$\displaystyle Q:\quad x^{\operatorname t}A x + 2b^{\operatorname t}x + c =0
$

where $ a(x)= x^{\operatorname t}A x$ and $ \beta(x)=b^{\operatorname t}x$.
(Authors: App/Burkhardt/Höllig)

  automatically generated 4/21/2005