Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online course: Linear Algebra - Normal Forms - Diagonalisation

Unitary Diagonalisation of Normal Matrices


[previous page] [next page] [table of contents][page overview]

A matrix $ A$ is normal if and only if $ A$ is unitarily diagonalisable, that is, if

$\displaystyle U^{-1} A U =
\operatorname{diag}(\lambda_1,\ldots,\lambda_n)
\,,
$

where the columns of $ U$ form an orthonormal basis consisting of eigenvectors associated with eigenvalues $ \lambda_j$.

(Authors: App/Burkhardt/Höllig/Kimmerle)

(temporary unavailable)

(temporary unavailable)

  automatically generated 4/21/2005