Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online problems:

Interactive Problem 363: Linear System of Equations (6X6)


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Solve the following linear system of equations:

\begin{displaymath}
\begin{array}{rcrcrcrcrcrcc}
& & x_2 & + & x_3 & + & x_4 ...
..._2 & + & x_3 & + & x_4 & + & x_5 & & & = & 30\\
\end{array}
\end{displaymath}

Solution: not specified

The LSE has

$ \rule[-0.5ex]{0pt}{2ex}$ no solution .
$ \rule[-0.5ex]{0pt}{2ex}$ exactly one solution ,
$ \rule[-0.5ex]{0pt}{2ex}$ infinitely many solutions ,
$ \rule[-0.5ex]{0pt}{2ex}$ $ \rule[-0.5ex]{0pt}{2ex}$ $ \rule[-0.5ex]{0pt}{2ex}$ $ \rule[-0.5ex]{0pt}{2ex}$ $ \rule[-0.5ex]{0pt}{2ex}$ $ \rule[-0.5ex]{0pt}{2ex}$
$ \rule[-0.5ex]{0pt}{2ex}$ namely $ x_1=$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_2=$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_3=$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_4=$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_5=$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_6=$ .
$ \rule[-0.5ex]{0pt}{2ex}$ namely $ x_1=r$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_2=$ $ r$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_3=$ $ r$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_4=$ $ r$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_5=$ $ r$ , $ \rule[-0.5ex]{0pt}{2ex}$ $ x_6=$ $ r$ .

Specify the solution rounded on three decimal places if it is necessary.


   


[Links]

  automatically generated: 8/11/2017