Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online problems:

Interactive Problem 34: Determination of (generalised) Eigenvectors


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Given the matrix

\begin{displaymath}
A=\left(
\begin{array}{rrr}
-1& 2& -1\\
-8&-10& 8\\
-15&-14& 13\\
\end{array}\right)\,.
\end{displaymath}

Find the shortest integral (generalised) eigenvectors, whose last entries are positive.

Eigenvector corresponding to the smallest eigenvalue: $ \left(\rule{0pt}{6ex}\right.$
$ \left.\rule{0pt}{6ex}\right)$
Eigenvector corresponding to the greatest eigenvalue: $ \left(\rule{0pt}{6ex}\right.$
$ \left.\rule{0pt}{6ex}\right)$
Third (generalised) eigenvector: $ \left(\rule{0pt}{6ex}\right.$
$ \left.\rule{0pt}{6ex}\right)$

   

(Authors: App/Höfert)

Solution:


[Links] [Problems]

  automatically generated: 8/11/2017