Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online problems:

Interactive Problem 278: Jordan Form of a Matrix


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Find the Jordan canonical form $ J$ of the matrix

$\displaystyle A=\left(\begin{array}{rrrrrr}
-2 & 0 & 1 & 0 & 0 & 0 \\
-1 & -1 ...
... & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
3 & 0 & 2 & 1 & 0 & 1
\end{array}\right)\,.
$


Solution: Give the diagonal $ d$ and the upper secondary diagonal $ n$ of $ J$. Sort the eigenvalues ascending and the Jordan blocks in descending size.

$ d=\big($ , , , , , $ \big)$
$ n=\big($ , , , , $ \big)$

   

(Authors: Blind/Höfert)

[Links]

  automatically generated: 8/11/2017