Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon: Annotation to

Taylor Polynomial


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The Taylor polynomial

$\displaystyle p_n(x) = f(a) + f'(a) (x-a) + \cdots +
\frac{f^{(n)}(a)}{n!} (x-a)^n
$

interpolates the derivatives of a function $ f$ at a point $ a$ up to order $ n$, i.e., $ p_n^{(k)}(a)=f^{(k)}(a)$ for $ k= 0,\ldots ,n$. If $ f$ is $ (n+1)$-times continuously differentiable,

$\displaystyle f(x) = p_n(x) + R,\quad
R = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}
\,,
$

for some $ t$ between $ a$ and $ x$.


A straightforward computation shows that the derivatives of $ f$ and $ p_n$ match.

To check the expression for the remainder $ R$, we augment an additional term:

$\displaystyle q(y) = p_n(y) + c (y-a)^{n+1}
\,,
$

where the constant $ c$ is chosen so that $ q(x)=f(x)$. As a consequence, $ q-f$ has a zero of order $ n+1$ at $ y=a$ and an additional zero at $ y=x$, i.e., the error hat $ n+2$ zeros, counting multiplicities. By Rolle's theorem, the $ (n+1)^$st derivative of $ q-f$ must have at least one zero $ t$:

$\displaystyle 0 = q^{(n+1)}(t) - f^{(n+1)}(t) =
c (n+1)! - f^{(n+1)}(t)
\,.
$

The asserted form of the remainder now follows from

$\displaystyle R = f(x) - p_n(x) = q(x) - p_n(x) = c (x-a)^{n+1}
\,.
$


[Back]

  automatisch erstellt am 20.  7. 2016