Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon: Annotation to

Dimensions of Kernel and Image


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Let $ \alpha: V\longmapsto W$ be a linear map and let $ \operatorname{dim} V<\infty$. Then the following holds true:
(i)
$ \operatorname{Ker}(\alpha)$ is a subspace of $ V$.
(ii)
$ \operatorname{Im}(\alpha)$ is a subspace of $ W$.
(iii)
$ \operatorname{dim} V =
\operatorname{dim}\operatorname{Ker}(\alpha) +
\operatorname{dim}\operatorname{Im}(\alpha)$


(temporary unavailable)

[Back]

  automatisch erstellt am 19.  8. 2013