Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon: Annotation to

Parallelepidial Product - Calculation of Coordinates


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

If the vectors $ \vec{u}$ , $ \vec{v}$ and $ \vec{w}$ span a proper parallelepiped, then every vector $ \vec{x}$ can be represented by a linear combination

$\displaystyle \vec{x} =
\alpha \vec{u} + \beta \vec{v} + \gamma \vec{w}
$

with the coefficients

$\displaystyle \alpha = \frac{[\vec{x},\vec{v},\vec{w}]}
{[\vec{u},\vec{v},\vec...
...
\gamma = \frac{[\vec{x},\vec{u},\vec{v}]}
{[\vec{w},\vec{u},\vec{v}]}\,
.
$


(temporary unavailable)

[Back]

  automatisch erstellt am 19.  8. 2013