Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online lexicon:

Steepest Descent for a Quadratic Function


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For a quadratic function

$\displaystyle f(x) = \frac{1}{2} x^{\text{t}} A x - b^{\text{t}} x
$

with a symmetric positive definite matrix $ A$, one step $ x\to y$ of the method of steepest decent has the form

$\displaystyle y = x + t d,\
d = -$grad$\displaystyle f(x) =
b - Ax
\,.
$

In this special case, the minimum of

\begin{displaymath}
\begin{array}{rcl}
f(x+td) &=& \frac{1}{2} (x+td)^{\text{t}}...
...A d\,t^2 +
(x^{\text{t}}Ad - b^{\text{t}}d)\,t + c
\end{array}\end{displaymath}

can be determined explicitly. Setting the derivative with respect to $ t$ to zero, we obtain

$\displaystyle 0=d^{\text{t}}Ad\, t -
(\underbrace{b-Ax}_{d})^{\text{t}}d
\,,
$

which yields the formula

$\displaystyle t = \frac{d^{\text{t}} d}{d^{\text{t}}Ad}
\,.
$

The figure illustrates that steepest decent can lead to unwanted oscillations if $ A$ has eigenvalues of different magnitude. An extreme example is provided by choosing

$\displaystyle A = \left(\begin{array}{cc} 1&0 \\ 0&100
\end{array}\right),\quad
b = \left(\begin{array}{c} 0 \\ 0
\end{array}\right)
\,.
$

Then, for $ x=(\begin{array}{cc} c & 1 \end{array})^{\text{t}}$, we have

$\displaystyle d =
-\,\left(\begin{array}{c} c \\ 100
\end{array}\right),\quad
Ad =
-\, \left(\begin{array}{c} c \\ 10^4
\end{array}\right)
$

and

$\displaystyle d^{\text{t}}d = c^2 + 10^4,\quad
d^{\text{t}}Ad = c^2 + 10^6,\quad
t = \frac{c^2 + 10^4}{c^2 + 10^6}
\,.
$

This yields

$\displaystyle y=
\left(\begin{array}{c} c \\ 1
\end{array}\right) -
\frac{c^2...
...9c^2}{c^2 + 10^6}
\left(\begin{array}{c} 10^4/c \\ -1
\end{array}\right)
\,.
$

In particular, for $ c=100$,

$\displaystyle y = \frac{99}{101}
\left(\begin{array}{c} x_1 \\ -x_2
\end{array}\right)
\,.
$

We see that the distance to the minimum at the origin is reduced by less than $ 1\%$ in each iteration step.
[Links]

  automatisch erstellt am 22.  6. 2016