Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Absolute Value of Complex Numbers


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The absolute value of a complex number $ z=x+\mathrm{i}y$ is defined as

$\displaystyle \vert z\vert = \sqrt{x^2 + y^2} = \sqrt{z\bar z} .
$

For $ z\in\mathbb{R}$ this definition is consistent with the definition of the absolute value of real numbers and has corresponding properties.

(Authors: Höllig/Kimmerle/Abele)

see also:


[Annotations]

  automatically generated 6/11/2007