Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Axis and Angel of Rotation


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A rotation $ Q$ in $ \mathbb{R}^3$ has an axis of rotation, i.e. $ Q$ fixes an unit vector $ u$, and corresponds to a plane rotation by an angle $ \vartheta$ in the plane orthogonal to $ u$.

With respect to an orthonormal right-handed coordinate system $ u,v,w$, the matrix representation of $ Q$ is given by:

$\displaystyle \tilde Q =
\left(\begin{array}{ccc}
1&0&0 \\
0&\cos\vartheta & -\sin\vartheta \\
0&\sin\vartheta & \cos\vartheta \\
\end{array}\right)
\,.
$

For the angle of rotation

$\displaystyle \cos\vartheta = \frac{1}{2}\left(\operatorname{Spur} Q - 1\right)
$

holds.
(Authors: Höllig/Reble/Höfert)

Example:


[Annotations] [Links]

  automatically generated 1/12/2007