Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Divergence


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The divergence of a differentiable vector field

$\displaystyle \Phi (x_1, \ldots, x_n) = \left( \begin{array}{c} f_1(x_1, \ldots , x_n) \\
: \\
f_n(x_1, \ldots , x_n) \end{array} \right)
$

is defined as

$\displaystyle \operatorname{div} \Phi =
\partial_{x_1} f_1 + \ldots + \partial_{x_n} f_n \ .
$

In particular for a vector field $ \Phi (x,y,z) = \left( \begin{array}{c} p(x,y,z) \\
q(x,y,z) \\
r(x,y,z) \end{array} \right) $ in $ \mathbb{R}^3$

the divergence is

$\displaystyle \operatorname{div} \Phi =
p_x + q_y + r_z \ .
$

Note that the divergence is a scalar function. It is invariant under orthogonal coordinate transformations.

Physical interpretation: The divergence of $ \Phi $ is the rate of outward flow per unit volume per unit time at $ P
.$

()

see also:


[Annotations] [Examples]

  automatically generated 8/ 1/2011