Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Subspace


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A subset $ U$ of a $ K$-vector space $ V$ is called a vector subspace (or simply a subspace) of $ V$, if $ U$ itself, endowed with the addition and the scalar multiplication defined in $ V$, forms a vector space.

if $ u, v\in U$ and $ \lambda\in K$, then it immediatetly follows that $ u + v \in U $ and $ \lambda\cdot u \in U$.

(Authors: App/Burkhardt/Kimmerle)

see also:


[Examples]

  automatically generated 4/ 1/2005