Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Diagonalization of Cyclic Matrices


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A cyclic $ n\times n$-matrix $ A$ can be diagonalised by means of Fourier matrix

$\displaystyle W = (w^{jk})_{j,k=0,\ldots,n-1}, \quad
w = \exp(2\pi\mathrm{i}/n)\, :
$

$\displaystyle \frac{1}{n} \overline{W}
\left(\begin{array}{cccc}
a_0 & a_{n-1...
...\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end{array}\right)\,
,
$

where

$\displaystyle \lambda_\ell = \sum_{k=0}^{n-1} a_k w^{-k'\ell},\quad
\ell=0,\ldots,n-1
$

are the eigenvalues of $ A$.
(Authors: App/Burkhardt/Höllig)

see also:


[Annotations] [Examples]

  automatically generated 3/16/2005