Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Linear Combination


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Given vectors $ v_1, v_2,\dots,v_m$ in a $ K$-vector space and given $ \lambda_i \in K$. A sum of the form

$\displaystyle \lambda_1 v_1 + \lambda_2 v_2 +\dots + \lambda_m v_m = \sum_{i=1}^m
\lambda_i v_i
$

is called a linear combination of the vectors $ v_i$.

More generally:

Let $ W \subset V$. A liner combination from $ W$ is a linear combination of a finite number of vectors from $ W$, that is, it is a finite sum of the form

$\displaystyle \lambda_1 w_1 + \lambda_2 w_2 + \dots + \lambda_k w_k = \sum_{i=1}^k
\lambda_i w_i \, ,
$

where $ w_i \in W$ and $ \lambda_i \in K$ für $ 1 \leq i \leq k$.

(Authors: App/Burkhardt/Kimmerle)

see also:


[Examples]

  automatically generated 2/10/2005