Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Total Derivative


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A real function $ f:\mathbb{R}^n\to\mathbb{R}^m$ is called differentiable in $ x$ , if

$\displaystyle f(x+h) = f(x)+f^\prime(x)h + o(\vert h\vert)
$

for $ \vert h\vert\to0$.

The total derivative $ f^{\prime}$ is the Jacobi matrix consisting of the partial derivatives of $ f$ :

\begin{displaymath}
f^\prime=\operatorname{J}f=
\frac{\partial(f_1,\ldots,f_n)...
...tial_1 f_m & \dots & \partial_n f_m
\end{array}
\right) \,.
\end{displaymath}

If $ f$ is a scalar function (i.e. $ m=1$) the total derivative is called the gradient of $ f$,

$\displaystyle f^\prime = \left(\operatorname{grad}\,f\right)^{\operatorname t}\,.$

For the parametrization of a curve ($ n=1$) it is called the tangent vector.

()

see also:


[Annotations] [Examples]

  automatically generated 5/30/2011