Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Symmetry to a Point and to a Line


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A function $ f(x)$ is symmetric to a vertical line $ x=a$ , $ a \in \mathbb{R}$ if

$\displaystyle f(a+x)=f(a-x).
$

A function $ f(x)$ is symmetric to a point $ (b/f(b))$, $ b \in \mathbb{R}$ if

$\displaystyle f(b+x)-f(b)=-f(b-x)+f(b).
$

(Authors: Jahn/Knödler)

Example:


[Links]

  automatically generated 11/29/2004