Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Orthogonal Basis


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

An orthonormal basis consists of $ 3$ mutually orthogonal unit vectors $ \vec{u}$, $ \vec{v}$, $ \vec{w}$.

\includegraphics[width=.7\linewidth]{a_on_basis}

As illustrated in the figure, any vector $ \vec{a}$ can be represented by a linear combination

$\displaystyle \vec{a} =
(\vec{a}\cdot\vec{u})\vec{u} +
(\vec{a}\cdot\vec{v})\vec{v} +
(\vec{a}\cdot\vec{w})\vec{w}\,.
$

The addends are the projections of $ \vec{a}$ onto the axes generated by the vectors of the ONB. For the coefficients we have

$\displaystyle \left\vert\vec{a}\cdot\vec{u}\right\vert^2+\left\vert\vec{a}\cdot...
...t^2+\left\vert\vec{a}\cdot\vec{w}\right\vert^2=\left\vert\vec{a}\right\vert^2. $

In particular, we have

$\displaystyle \left(\begin{array}{c}a_1\\ a_2\\ a_3\end{array}\right) =
a_1 \vec{e}_x +
a_2 \vec{e}_y +
a_3 \vec{e}_z
$

for the canonical orthonormal basis of the Cartesian coordinate system

$\displaystyle \vec{e}_x = \left(\begin{array}{c}1\\ 0\\ 0\end{array}\right),\qu...
...\right),\quad
\vec{e}_z = \left(\begin{array}{c}0\\ 0\\ 1\end{array}\right).
$

see also:


[Annotations] [Examples]

  automatically generated 3/17/2011