Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Normal Matrices


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A matrix $ A \in \mathbb{C}^{n \times n}$ is called normal if

$\displaystyle A A^\ast= A^\ast A\,,
$

where $ \bar{A}^{\operatorname t}=A^\ast$. In particular, unitary and Hermitian matrices are normal.

For real normal matrices we have $ AA^{\operatorname t}= A^{\operatorname t}A$. In particular, orthogonal and symmetric matrices satisfy this equation.

(Authors: App/Burkhardt/Höllig/Kimmerle)

see also:


[Annotations]

  automatically generated 2/ 9/2005