Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Taylor Polynomial


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The Taylor polynomial

$\displaystyle p_n(x) = f(a) + f'(a) (x-a) + \cdots +
\frac{f^{(n)}(a)}{n!} (x-a)^n
$

interpolates the derivatives of a function $ f$ at a point $ a$ up to order $ n$, i.e., $ p_n^{(k)}(a)=f^{(k)}(a)$ for $ k= 0,\ldots ,n$. If $ f$ is $ (n+1)$-times continuously differentiable,

$\displaystyle f(x) = p_n(x) + R,\quad
R = \frac{f^{(n+1)}(t)}{(n+1)!} (x-a)^{n+1}
\,,
$

for some $ t$ between $ a$ and $ x$.

Example:


[Annotations] [Links]

  automatically generated 7/20/2016