Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Riemann Integral


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

The definite integral of a piecewise continuous function $ f$ is defined by

$\displaystyle \int_a^b f(x)\,dx = \lim_{\vert\Delta\vert\to0} \int_a^b f_\Delta =
\lim_{\vert\Delta\vert\to0} \sum_{k} f(\xi_k)\,\Delta x_k \quad .
$

Here $ \Delta:\,a=x_0<x_1<\cdots<x_n=b$ is a partition of $ [a,b]$;

$\displaystyle \vert\Delta\vert=\max_k \Delta x_k\,, \qquad \Delta x_k=x_k-x_{k-1}\,, $

denotes the maximal length of the interval and $ \xi_k$ is an arbitrary point in the $ k$-th interval. The sums on the side of the integral's definition are called Riemann sums.

\includegraphics[width=0.6\linewidth]{riemann_bild}

For a positive function $ f$, $ \int_a^b f$ corresponds to the area below the graph of $ f$.

see also:


[Annotations] [Examples]

  automatically generated 9/22/2016