Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Rank-1 Modification of an Inverse Matrix


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

Let $ A$ be an invertible matrix and $ B$ the matrix obtained from $ A$ by replacing the $ j$-th column by a vector $ v$. If

$\displaystyle Au=v \,, \quad u_j \neq 0 \,,
$

then $ B$ is invertible and

$\displaystyle B^{-1}=Q A^{-1} \,,
$

where

$\displaystyle Q=E+ \frac{1}{u_j} \left( e_j -u \right) e_j^{\operatorname t}
$

with $ E$ the unit matrix and $ e_j$ the $ j$-th unit vector.
(Authors: Höllig/Pfeil/Walter)

Annotation:


[Examples] [Links]

  automatically generated 4/24/2007