Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Solution of a Symmetric Positive Linear System


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A linear system $ Sx=b$ with symmetric positive definite matrix $ S$ can be solved with the aid of the Cholesky factorization $ S = R^{\operatorname t} R$:

$\displaystyle R^{\operatorname t} \underbrace{Rx}_y =b \; \Longleftrightarrow \;
R^{\operatorname t} y=b \; \wedge \; Rx=y \,.
$

The solutions $ y$ and $ x$ of the two triangular systems are determined via forward and backward substitution, respectively.

In particular, the Cholesky factorization can be used for solving the normal equations

$\displaystyle \underbrace{A^{\operatorname t}A}_S x =
\underbrace{A^{\operatorname t}c}_b
$

if the $ m\times n$ matrix $ A$ has maximal rank $ n$.
(Authors: Höllig/Pfeil/Walter)

[Examples] [Links]

  automatically generated 4/24/2007