Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Hessenberg Form


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

For an $ n \times n$ matrix $ A$, the entries $ a_{j,k}$ with $ j>k+1$ can be annihilated with $ n-2$ Householder similarity transformations:

$\displaystyle A \mapsto B= Q_{n-2} \cdots Q_1 A Q_1 \cdots Q_{n-2}.
$

The transformation $ Q_\ell = Q_\ell^{\operatorname t}$ produces zeros below position $ (\ell +1,
\ell)$.

For symmetric $ A$, $ B$ is also symmetric, hence tridiagonal. Since eigenvalues are preserved, transformation to the so-called Hessenberg form is a useful preprocessing step for any eigenvalue routine.

(Authors: Höllig/Pfeil/Walter)

see also:


[Annotations] [Downloads]

  automatically generated 4/24/2007