Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematics-Online lexicon:

Givens Transformation


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z overview

A Givens transformation

$\displaystyle x \mapsto
\left(\begin{array}{rr}
c & -s \\ s & c
\end{array}\right)
\left(\begin{array}{c}
x_1 \\ x_2
\end{array}\right)
$

with

$\displaystyle c$ $\displaystyle = \sigma v_1 / \Vert v \Vert _2 \,, \quad s =-\sigma v_2 / \Vert v \Vert _2$    
$\displaystyle \sigma$ $\displaystyle = \left\{ \begin{array}{ll} 
 \text{sign} \left( v_1 \right)\, , & \text{if }v_1 \neq 0 \\ 
 1 \,, & \text{if } v_1 =0 
 \end{array} \right.$    

is a rotation which maps $ v=\left( v_1 , v_2 \right)^t$ to $ \left( \sigma \Vert v \Vert _2, 0 \right)^t$.

Typically, a Givens transformation is applied to two rows of a matrix:

$\displaystyle \left( \begin{array}{c} p_1 \ldots p_m \\
q_1 \ldots q_m \end{a...
... \right) \to
\left( \begin{array}{c} cp-sq \\ sp+cq \end{array} \right) \,.
$

The parameters are based on $ v= \left( p_1, \, q_1 \right)^t$ so that the entry $ q_1$ is annihilated by the transformation.

Annotation:


[Downloads] [Examples] [Links]

  automatically generated 3/ 8/2007