Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 97: Central Quadric, Center


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Let

$\displaystyle Q:
x_1^2-2x_2^2-x_3^2+x_1x_2-2\sqrt{3}\,x_1x_3+\sqrt{3}\,x_2x_3+2\,(1+\sqrt{3})\,x_1-8x_2-2\,(1-\sqrt{3})\,x_3=5 $

be a quadric in $ \mathbb{R}^3$ . Show that $ Q$ is a central quadric and find its center $ M$ .

(Authors: Kimmerle/Roggenkamp/Höfert)

see also:


[Solutions]

  automatisch erstellt am 14. 12. 2007