Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 88: Map of a Square onto itself


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The shown square $ Q\subset\mathbb{R}^2$ has the vertices $ P_1=(-1, -1)$, $ P_2=(1, -1)$, $ P_3=(1, 1)$ und $ P_4=(-1, 1)$.

\includegraphics[width=2.5cm]{g35_bild1}
a)
Find all linear maps $ \alpha:
\mathbb{R}^2\longrightarrow\mathbb{R}^2$ which fix $ Q$.
b)
Show that the maps form a group with respect to the composition $ \circ$.

(Authors: Kimmerle/Höfert)

Solution:


[Links]

  automatisch erstellt am 14. 10. 2004