Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 65: Section of Quadrics and Planes


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Let $ Q:\, 2x_1^2 +2 x_2^2 - x_3^2 = 0$ be a quadric in $ \mathbb{R}^3$ .
a)
Show that $ Q$ defines a double cone.
b)
Analyse what kind of geometric figures are the results of the section of $ Q$ and the following planes:

$\displaystyle \begin{array}{ll} E_1:\ x_1=1 & E_2:\ \sqrt{2}\,x_2+x_3=1
\\ [0.4cm]
E_3: \ x_1+2x_3=-1 \quad & E_4: \ x_1-x_2=0
\end{array} $

c)
Find a plane whose section with $ Q$ is a circle of radius 2.
d)
Do planes exist whose section with $ Q$ is a line?

(Authors: Kimmerle/Apprich/Höfert)

Solution:


[Links]

  automatisch erstellt am 14. 12. 2007