Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 58: Determination of Kernel and Image of a Linear Map


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Given the matrix

$\displaystyle A=\left(\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9
\end{array}\right). $

Let $ \alpha: \mathbb{R}^3\longrightarrow\mathbb{R}^3$ be the linear map, defined by $ x\longmapsto Ax$. Determine the kernel and the image of $ \alpha$ and show, that

$\displaystyle {\mathrm{Ker}}\, \alpha \perp {\mathrm{Im}}\, \alpha $

holds.
(Authors: Apprich/Höfert)

Solution:


[Links]

  automatisch erstellt am 14. 10. 2004