Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 429: Conic Sections


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In $ P=(0,1,0)$ there is a rotating cone of light, defined by

$\displaystyle x^2 \cos t - (y-1)^2 \cos t + 2x(y-1) \sin t -z^2 \ge 0\; , \qquad t \in
\mathbb{R}\; .
$

Analyse the time dependence of the section of cone and the three coordinate planes. Sketch the section figures at the points of time $ t=0,\pi/2,\pi$.

(Authors: Höllig/Höfert)

[Links]

  automatisch erstellt am 12.  3. 2018