Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 40: Matrix Representation of a Linear Map


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Given the vectors

$\displaystyle b_1=(1, -2, -2)^{{\operatorname t}}, \quad b_2=(0, 1, 1)^{{\opera...
...}, \quad
c_1=(3, 0)^{{\operatorname t}}, \quad c_2=(1, 1)^{{\operatorname t}}. $

Let $ \alpha:
\mathbb{R}^3\longrightarrow\mathbb{R}^2$ be the linear map defined by $ b_1\longmapsto
c_1$, $ b_2\longmapsto c_2$ and $ b_3\longmapsto c_1+c_2$. $ E=\{e_1, e_2, e_3\}$ and $ \tilde{E}=\{\tilde{e}_1, \tilde{e}_2\}$ are canonical bases of $ \mathbb{R}^3$ respectively $ \mathbb{R}^2$. Find the matrix representation of $ \alpha$ with respect to the bases

a) $ B=\{b_1, b_2, b_3\}$ and $ C=\{c_1, c_2\}$,       b) $ B$ and $ \tilde{E}$,
c) $ E$ and $ C$,      d) $ E$ and $ \tilde{E}$.

(Authors: Apprich/Höfert)

[Links]

  automatisch erstellt am 29.  7. 2009