Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 242: Rotating Frames of Reference


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

The picture shows the paths of a circular motion

$\displaystyle x = 3 + \cos t,\quad y = \sin t
$

(or $ z = 3 + \exp(\mathrm{i} t)$ in terms of komplex numbers) relative to rotating frames of reference, $ z'=x'+{\rm {i}}
y':=z\,{\rm {exp}}({\rm {i}} \omega t)$, with different angular velocities $ \omega$.

\includegraphics[width=0.8\linewidth]{A974a_bild1.eps}

Which values of $ \omega$ correspond to the examples given above? When can bends (observed velocity is 0) appear?


[Links]

  automatisch erstellt am 18.  1. 2017