Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 113: Curve Sketching of a Logarithmic Function


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Let $ f$ and $ g$ be the real functions given by $ f(x)=\sqrt{3+2x}-x$ and $ g(x)=\ln\,(f(x))$ .
a)
Determine $ f$ 's domain and sketch the graph. What is $ g$ 's domain?
b)
Examine $ g$ with regard to zero points, asymptotes and local extrema.
c)
How do $ g$ and $ g'$ behave at the domain's boundary points?
d)
Draw the graph of the function $ g$ . note: $ \ln 2\approx 0,69; \ \ln 3\approx 1,10$ .

(Authors: Kimmerle/Roggenkamp/Rump/Abele)

Solution:


[Links]

  automatisch erstellt am 24. 10. 2007