Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 1093: Integration over a Simplex


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Find the integral of the function

$\displaystyle f(x,y,z) = (1-x-y)z
$

over the simplex.

$\displaystyle S:\quad x,y,z \geq 0\,, \quad x+y+z\leq 1 \, .
$

First you should show, that the transformation defined by

$\displaystyle \left( \begin{array}{r}x\\ y\\ z\end {array}
\right) = g(u,v,w) ...
...v (1-u)\\
w (1-u)(1-v) \end {array} \right) \,, \qquad 0 \le u,v,w \le 1 \,,
$

transfers the simplex $ S$ into the unit cube.

Using this transformation it is easy to calculate the integral.

(Author: Höfert)

see also:


[Examples]

  automatisch erstellt am 22.  7. 2008