Mo logo [home] [lexicon] [problems] [tests] [courses] [auxiliaries] [notes] [staff] german flag

Mathematik-Online problems:

Problem 102: Continuity of Functions


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Find the domain and codomain of the given functions $ f:
\mathbb{R}\longrightarrow\mathbb{R}$, and test for which $ x$ $ f$ is continuous respectively one-side continuous.

a) $ {\displaystyle{f(x)=x^4-2+\sqrt{2-\frac{1}{x^4}}}}$         b) $ {\displaystyle{f(x)=\frac{x^3+2x^2-11x-12}{x^4-10x^3+22x^2-10x+21}}}$
c) $ f(x)=\sqrt{{\rm {ln}}\,x}+{\rm {ln}}\,\sqrt{x}$         d) $ f(x)=\tan x\cdot \sin \frac{1}{x}$
e) $ f(x)=\max\,\{z\in\mathbb{Z} \mid z\leq x\}$    

(Authors: Apprich/Höfert)

Solution:


[Links]

  automatisch erstellt am 14. 10. 2004